
PHYSICAL REVIEW A 89, 013855 (2014)
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We present an approach for calculating the nonlinear propagation of surface plasmon polaritons in one-
dimensional planar waveguides consisting of a metal slab or a semi-infinite metal bounded by linear dielectrics,
starting with an assumed third-order nonlinearity that characterizes the nonlinear response of the metal. With this
approach we model the self-phase-modulation of surface plasmon polaritons. Expressions relating the complex
nonlinear parameter of these surface waves with the third-order nonlinear susceptibility of the metal are provided.
We present and discuss results pertaining to the self-phase-modulation of the symmetric and antisymmetric surface
plasmon polaritons supported by a thin gold slab in vacuum and of the surface plasmon polariton supported by
the single gold-vacuum interface.
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I. INTRODUCTION

For decades, nonlinear optical effects have proved useful
for many different applications, such as nonlinear microscopy
[1], ultrafast laser systems [2], optical frequency conversion
[3], and all-optical switching [4]. Recently, there has been
much interest in studying these phenomena at the nanoscale,
particularly in plasmonic structures [5]. Such structures typ-
ically incorporate nanoscopic metallic features that enable
enhanced nonlinear effects mediated by surface plasmon
polaritions (SPPs), which are collective charge oscillations
coupled to photons at the surface of metals [6]. For extended
metal surfaces, these collective excitations take the form of
transverse-magnetic (TM) polarized optical surface waves
that propagate along the metal’s surface. Because of their
capacity to concentrate intense fields over subwavelength
scales, SPPs can enhance nonlinear optical processes in
metallic nanoparticles as well as at extended metal surfaces
[7,8]. As a result, numerous theoretical and experimental
works have studied nonlinear effects in different plasmonic
structures such as flat and patterned metallic surfaces [9–
12], layered metalodielectric structures [13–15], and metallic
nanoparticles [16–19].

The nonlinear response of SPPs propagating along different
types of plasmonic waveguides has been theoretically inves-
tigated by several groups [20–27]. In most of these studies
it is assumed that the nonlinearity results from a Kerr-type
nonlinear dielectric bounding the metal, while the metal is
taken as a linear medium. However, SPPs are intrinsically
nonlinear (even in the absence of a nonlinear dielectric) as
they exist on structures composed of metallic media, which
exhibit strong and ultrafast third-order nonlinear response at
optical wavelengths [28,29]. Thus it is important to develop
methods to study and design nonlinear plasmonic waveguides
based on this intrinsic nonlinear response.

In this work we present an approach for calculating the
intrinsic nonlinear propagation of SPPs supported by two typ-
ical plasmonic waveguides: a metallic slab and a semi-infinite
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metal bounded by linear dielectrics. In particular, we use this
approach to model the phenomenon of self-phase-modulation,
whereby the complex propagation constant of the SPP is
modified by the SPP itself via the third-order nonlinearity of
the metal. We derive an expression for the complex nonlinear
parameter that characterizes the self-phase-modulation in
terms of the structural properties of the waveguide, and use it
to construct a differential equation that describes the evolution
of the SPP’s complex amplitude. Solving this differential
equation provides us with a self-consistent way to estimate
the nonlinear phase and nonlinear loss experienced by the SPP
upon propagation. We employ our approach to estimate the
maximum nonlinear phase shift acquired by the various SPP
modes supported by two structures of interest, using gold (Au)
as the metal and vacuum playing the role of the dielectric.
Finally, we compare the results of our method with recent
experimental results and present a discussion around it.

II. STRUCTURES INVESTIGATED

The structures investigated are shown in Figs. 1(a) and
1(b). The first structure consist of a metal slab that occupies
the region 0 > z > −d and is bounded by dielectrics. The
relative permittivity of the metal is denoted by ε3, and those
of the dielectrics above (z > 0) and below (z < −d) the slab
are denoted by ε1 and ε2, respectively. The second structure
is a single metal-dielectric interface, which corresponds to
the case of a slab with infinite thickness. We shall refer to
the metal, top dielectric, and bottom dielectric as media 3,
1, and 2, respectively. We consider linear dielectrics with
Reε1,Reε2 > 0, and a metal with Reε3 < 0, such that SPPs
are supported by the system. Furthermore, we consider a metal
whose optical nonlinearity is characterized by a third-order
nonlinear susceptibility, χ (3).

When the thickness of the slab is large, the structure
supports a bound SPP at each metal-dielectric interface.
However, when this thickness is comparable to the optical
penetration depth into the metal, the SPPs at each interface
couple giving rise to different SPP modes. Two of these new
modes are bound [30,31]. For the case when ε1 �= ε2, the z

component of the electric fields associated with these bound
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FIG. 1. (Color online) Structures investigated: (a) metal slab of
thickness d bound by linear dielectrics; (b) single metal-dielectric
interface corresponding to case in (a) where d = ∞. The z component
of the fields (real part) associated with the various SPP modes
supported are outlined.

modes exhibit a quasisymmetric and a quasiantisymmetric
distribution along the z direction. On the other hand, for
ε1 = ε2, these modes have a true symmetric and antisymmetric
transverse distribution, as sketched in Fig. 1(a). We shall refer
to the symmetric (or quasisymmetric) mode as the s mode and
to the antisymmetric (or quasiantisymmetric) mode as the a

mode. In general, the a mode has a significant part of the field
in the metal; hence it exhibits a very large propagation loss; on
the other hand, the s mode has most of the field in the bounding
dielectrics, which leads to a relatively small propagation loss.
For the infinitely thick slab, the structure supports only one
mode; i.e., the conventional single-interface SPP mode. We
shall refer to this mode as the c mode. The z component
of the SPP transverse electric-field distribution is outlined in
Fig. 1(b). For this, the portion of the field in the metal, and
hence the propagation loss of the mode, is in between that of
the a mode and the s mode.

III. THEORETICAL MODEL

Throughout the text, all the fields are assumed to have the
form F(r,t) = F(r) exp(−iωt) + c.c., where c.c. denotes
the complex conjugate and the position vector is defined in the
(y,z) plane; i.e., r = z ẑ + y ŷ. Furthermore, it will be useful
for our analysis to write the SPP electric field as

E(r) = f (y)e(z)eiκ ′
my. (1)

Here and below, m = {s,a,c} denote the various SPP modes,
f (y) is the field envelope function, which describes the
evolution of the field’s amplitude as the SPP propagates in
the y direction, e(z) is the transverse electric-field distribu-
tion, and κ ′

m = Reκm, with κm being the SPP propagation
constant.

For linear propagation, f (y) is a real function that satisfies
the homogeneous differential equation,

df (y)

dy
= −κ ′′

mf (y), (2)

where κ ′′
m = Imκm. The solution of this equation describes

the typical exponential decay of the SPP field as the wave
propagates, which results from the linear optical absorption
in the metal. This description is no longer valid for nonlinear
propagation, as the SPP experiences an additional nonlinear
phase and loss. Indeed, for self-phase-modulation, the nonlin-
ear phase and loss acquired by the SPP render f (y) a complex
function that depends on the intensity of the SPP itself. The

purpose of the present analysis is to formulate a differential
equation describing the behavior of f (y) accounting for the
process of self-phase-modulation.

The remainder of this section is divided in four sections
that explain our theoretical approach. In Sec. III A we obtain
expressions for the linear SPP fields of the slab waveguide,
as they will be used later for the nonlinear analysis. In
Sec. III B we employ a Green-function formalism to formulate
a differential equation for f (y) in the slab waveguide, allowing
the presence of an arbitrary nonlinear polarization field in the
metal. In Sec. III C we use the results of previous sections
to model the self-phase-modulation of SPPs by letting the
nonlinear polarization in the metal be generated by the SPP
field, and in Sec. III D we extend these results to the single-
interface waveguide by taking the limit where the thickness of
the metal slab is infinite.

A. Linear response

We treat the nonlinear problem as a perturbative approach to
the linear solution, assuming that the nonlinearity modifies the
form of f (y) but not the form of e(z). Thus we start our analysis
by obtaining the transverse field distribution, e(z), in the linear
regime for the structure shown in Fig. 1(a). We consider a TM-
polarized plane wave in medium 1 that propagates downwards
in the (z,y) plane and impinges onto the structure at z = 0.
After a simple reflection and transmission analysis, one finds
electric fields of the form

E1(r) = E0[ p̂1−e−iw1z + p̂1+R12e
iw1z]eiκy,

E3(r) = E0T12t
−1
32 [ p̂3−e−iw3(z+d) + p̂3+r32e

iw3(z+d)]eiκy,

E2(r) = E0T12[ p̂2−e−iw2(z+d)]eiκy (3)

for media 1, 3, and 2, respectively. The different quantities
in (3) are defined as follows: E0 is the electric-field strength
of the incident plane wave, κ is the wave-vector component
in the plane of the surface, and the wave-vector component
perpendicular to the surface is ±wi , where wi =

√
ω̃2εi − κ2,

with ω̃ = ω/c being the wave number in free space. To
completely define wi , we take the sign of the square root
that makes Imwi � 0, and if Imwi = 0 then we take the sign
that makes Rewi � 0. The unit TM-polarization vectors, p̂i±,
denote the polarization of the electric fields in the different
media and are given by

p̂i± = κ ẑ ∓ wi ŷ
ω̃

√
εi

, (4)

where the subindex i+ (i−) indicates that the polarization
vector is associated with radiation in medium i = {1,2,3}
propagating in the positive (negative) z direction. The Fresnel
reflection (rij ) and transmission (tij ) coefficients of the
individual metal-dielectric interfaces for TM polarization are

rij = wiεj − wjεi

wiεj + wjεi

, tij = 2
√

εi
√

εjwi

wiεj + wjεi

, (5)

and the reflection (R12) and transmission (T12) coefficients of
the slab (i.e., the response coefficients) are given by the usual
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expressions

R12 = p(κ)(r32e
2iw3d + r13),

(6)
T12 = p(κ)t13t32e

iw3d ,

with

p(κ) = (1 − r31r32e
2iw3d )−1. (7)

The fields in (3) are typically used when one actually has an
incident wave making an angle ϕ from the normal in medium
1, in which case κ = ω̃

√
ε1 sin ϕ. Nonetheless, these fields are

solutions of the Maxwell equations for any κ , including κ >

ω̃
√

ε1 (corresponding to values of ϕ beyond the critical angle)
for which SPPs are found. With this in mind, and noting that
the s and a modes have propagation constants κm associated
with the poles of p(κ), we approximate (6) for κ close to
κm by replacing p(κ) with the contribution of its pole at κm,
yielding

Rm
12 ≈ ρ12

κ − κm

with ρ12 = �m

(
rm

32e
2iwm

3 d + rm
13

)
, (8a)

T m
12 ≈ τ12

κ − κm

with τ12 = �mtm13t
m
32e

iwm
3 d . (8b)

In these expressions, �m is a complex-valued quantity that
can be calculated using standard pole analysis techniques, as
detailed in Appendix A. Here and below, we use the superscript
m in various functions of κ to indicate that κ has been replaced
by κm.

At the SPP excitation, the field in medium 1 is evanescent in
the z direction; i.e., E1(z) ∝ p̂m

1+ exp(iwm
1 z). In this situation,

the term associated with the incident wave in expression (3)
must vanish, otherwise it would diverge as z → ∞. This is
possible only if E0 vanishes as κ → κm. Thus, to obtain the
electric-field distribution of the various SPP modes of the slab,
we use (8) in (3) and set E0 ∝ (κ − κm), while letting κ → κm.
This yields

E1(r) ∝ p̂m
1+ρ12e

iwm
1 zeiκmy,

E3(r) ∝ τ12

tm32

[
p̂m

3−e−iwm
3 (z+d) + p̂m

3+rm
32e

iwm
3 (z+d)] eiκmy, (9)

E2(r) ∝ p̂m
2−τ12e

−iwm
2 (z+d)eiκmy.

This expression can be cast in the form of (1) by using the
field envelope function, f (y), as the proportionality constant
(with units of V/m) and writing the transverse field, e(z), in
the different regions as

e1(z) = p̂m
1+eiwm

1 z,

e3(z) = τ12

ρ12t
m
32

[
p̂m

3−e−iwm
3 (z+d) + p̂m

3+rm
32e

iwm
3 (z+d)

]
, (10)

e2(z) = τ12

ρ12
p̂m

2−e−iwm
2 (z+d).

Of course, this agrees with the result of the more common
strategy for finding the SPP field [31], based on applying the
conditions the fields satisfy on crossing the interfaces at z = 0
and z = −d.

The power per unit length (along the x direction) carried
by the SPP, s(y), is obtained from the time-averaged Poynting
vector as the power flow along the y direction; i.e., s(y) =

2 Re
∫ ∞
−∞(E × H∗) · ŷ dz. Here, H = (iωμ0)−1∇ × E is the

magnetic field with μ0 being the vacuum permeability. Using
this expression together with (1) and (10) one obtains

s(y) = Km|f (y)|2, (11)

where

Km = Reκm

ωμ0

[
Reε−1

1 |ε1|
Imwm

1

+
∣∣∣∣ τ12

ρ12

∣∣∣∣
2 Reε−1

2 |ε2|
Imwm

2

+
∣∣∣∣ rm

31

tm31

∣∣∣∣
2
(

σ1Reε−1
3 |ε3|

Imwm
3

+ σ2Reε−1
3 |ε3|

Rewm
3

)]
, (12)

with σ1 = (|rm
32|2e−2d Imwm

3 + 1)(1 − e−2d Imwm
3 ) and σ2 =

Rei(1 − e−2id Rewm
3 )/(rm

31). Equations (11) and (12) will be
useful for our nonlinear analysis in the following sections.
Note that these equations hold in the nonlinear regime because
we assume that linear transverse fields in (10) retain their form
in the presence of nonlinearities.

B. Nonlinear response

We shall now proceed to study the nonlinear response of
SPPs supported by the structure shown in Fig. 1(a).

As a preliminary, consider first the linear response of the
slab structure to a specified source polarization located in the
metal layer and having the form of a two-dimensional sheet
extended over the (x,y) plane at z = z0. This polarization
distribution is defined mathematically as ℘̃δ(z − z0) exp(iκy)
with the vector ℘̃ lying in the (y,z) plane and −d < z0 < 0. In
turn, the electric field generated by such a polarization sheet
has the form Ẽ(κ; z,z0) exp(iκy). Generated fields in planar
structures involving surfaces, such as the one studied here, can
be obtained using a Green-function formalism detailed earlier
[32]. Here, we employ this method to obtain the coefficient
Ẽ(κ; z,z0); we state only the final solution and refer the reader
to the literature for details [in particular, refer to Sec. 4 of
Ref. [32] and to the discussion around Eqs. (4.8) to (4.21)].
For the metal slab geometry one obtains

Ẽ(κ; z,z0) = iω̃2p(κ)

2ε0w3
℘̃ · q(z,z0) − 1

ε0ε3
δ(z − z0)℘̃ · ẑ ẑ,

(13)

where the first term on the right-hand side is related to the
part of the fields radiated by the polarization sheet and the
second term is a local contribution of the polarization sheet.
In this expression, ε0 is the vacuum permittivity and q(z,z0) is
a tensor given by

q(z,z0) = u(z0) p̂1+t31e
iw1zθ (z)

+ v(z0) p̂2−t32e
−iw2(z+d)θ (−z − d)

+ u(z0)[ p̂3+eiw3z + p̂3−r31e
−iw3z]θ (z − z0)θ (−z)

+ v(z0)[ p̂3+r32e
iw3(z+d) + p̂3−e−iw3(z+d)]

× θ (z0 − z)θ (z + d), (14)

where θ (z) is the Heaviside function, which is defined as
θ (z) = 1 for z > 0 and θ (z) = 0 for z < 0, and the functions
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u(z) and v(z) are given by

u(z) = [ p̂3+e−iw3(z+d) + p̂3−r32e
iw3(z+d)]eiw3d , (15)

v(z) = [ p̂3+r31e
−iw3z + p̂3−eiw3z]eiw3d . (16)

The fields described by (13) can be readily generalized to
other polarization distributions. For instance, consider a more
general polarization field, P̃(κ; z) exp(iκy), and the associated
electric field, Ẽ(κ; z) exp(iκy). In this case, the coefficients
Ẽ(κ; z) are obtained by taking a linear superposition of the
fields in (13) over the region 0 < z < −d, which yields

Ẽ(κ; z) = iω̃2p(κ)

2ε0w3

∫ 0

−d

P̃(κ; z0) · q(z,z0)dz0

− 1

ε0ε3
P̃(κ; z) · ẑ ẑ. (17)

This expression describes the field in the slab structure
generated by an arbitrary source polarization field distribution
with a well defined κ .

We use these results in our nonlinear propagation problem
by now taking P̃(κ; z0) to be the nonlinear polarization in the
metal, which must be determined self-consistently. To obtain
the electric field radiated by the nonlinear polarization into the
SPP mode m, we approximate p(κ) ≈ �m(κ − κm)−1, which is
valid for values of κ close to κm (see Appendix A for details),
and replace q by qm and w3 by wm

3 , where the superscript m

has the usual meaning. After some algebra, one obtains

(κ − κm)Ẽ(κ; z) = η(κ)e(z) − (κ − κm)

ε0ε3
P̃(κ; z) · ẑ ẑ, (18)

where we have defined

η(κ) = iω̃2�m

2ε0w
m
3

tm31

∫ 0

−d

P̃(κ; z0) · um(z0)dz0. (19)

Note that the second term on the right-hand side of (18) is not
part of the SPP field, but it results from the local contribution
of the polarization. This term, however, is negligible when
working with field intensities in the order of those required for
a valid perturbative description of the nonlinear susceptibilities
(see Appendix B for details). Thus we can write (18) as

(κ − κm)Ẽ(κ; z) = η(κ)e(z), (20)

which describes the field radiated into the SPP modes of the
slab (m = {s,a}) by the nonlinear polarization.

With this result, we proceed to obtain a differential equation
to describe the evolution of f (y) in the nonlinear regime. We
start by noting that Eq. (20) holds when κ is sufficiently close
to κm so that only the SPP excitation is important. With this in
mind, we allow ourselves to write a more general field of the
form

E(r) =
∫

dκ

2π
Ẽ(κ; z)eiκy, (21)

where we allow κ to take only values close to κ ′
m. Naturally,

this field must have the form of that in (1), implying that the
Fourier coefficients in (21) are given by

Ẽ(κ; z) = f̃ (κ − κ ′
m)e(z), (22)

where f̃ (κ) are the Fourier coefficients of f (y); this is,

f (y) =
∫

dκ

2π
f̃ (κ)eiκy. (23)

Here f (y) not only describes the exponential decay of the
field due to κ ′′

m, but also the nonlinear contribution from the
field generated by the nonlinear polarization. Consequently,
the differential equation describing the evolution of f (y) is no
longer homogeneous as in the linear case [i.e., Eq. (2)], but
it must include an inhomogeneous term associated with the
nonlinear polarization. To construct this differential equation,
we first note from (22) and (20) that (κ − iκ ′′

m)f̃ (κ) = η(κ +
κ ′

m). From this expression, we transform f̃ (κ) to the spatial
domain using (23) and differentiate with respect to y to obtain

df (y)

dy
= −κ ′′

mf (y) + i�(y), (24)

where

�(y) = iω̃2�m

2ε0w
m
3

tm31e
−iκ ′

my

∫ 0

−d

P(r) · um(z)dz. (25)

Clearly, the first term on the right-hand side of (24) gives the
decay of the SPP envelope function due to the linear losses,
while the second term allows the field envelope to be modified
by P(r).

C. SPP self-phase-modulation: Metal slab

Equation (24) describes the evolution of the SPP field
envelope in a rather general fashion, as P(r) can have an
arbitrary distribution. Nonetheless, this expression can be
readily adapted to model the self-interaction of SPPs through
the nonlinear response of the metal, which leads to SPP self-
phase-modulation. This phenomenon is characterized by the
complex nonlinear parameter, γm, which is defined such that
the real (imaginary) part of the product γms(y) gives the local
rate of nonlinear phase (nonlinear attenuation) experienced by
the SPP upon propagation.

Consider first the s and a modes supported by the slab
structure depicted in Fig. 1(a). From (25) we note that if P(r)
results from the nonlinear response of the metal to a SPP
field, then the term �(y) in (24) will describe the self-phase-
modulation of the SPP. Thus, taking the nonlinear polarization
in the metal as 3ε0χ

(3)|E(r)|2 E(r), one obtains the nonlinear
polarization induced by the SPP field as

P(r) = 3ε0χ
(3)|f (y)|2f (y)|e(z)|2e(z)eiκ ′

my.

Using this expression together with (11) in (25) one can rewrite
the field envelope evolution equation as

df (y)

dy
= −f (y)κ ′′

m + if (y)s(y)γm, (26)

with the complex nonlinear parameter given by

γm = 3iω̃2χ (3)�m

2Kmwm
3

tm31

∫ 0

−d

|e3(z)|2e3(z) · um(z)dz (27)

for m = {s,a}. A more explicit form of (27) is given in
Appendix C. Note that since the field is uniform only in the
x direction, γm has units of inverse power (W−1) rather than
more conventional units of length per unit of power that arise
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for plane-wave propagation, where the field is uniform in the
two directions perpendicular to the direction of propagation.

D. SPP self-phase-modulation: Single interface

Consider now the single metal-dielectric interface config-
uration depicted in Fig. 1(b), which corresponds to the case
of an infinitely thick slab (d → ∞). In this limit, only the c

mode is supported at the interface between media 1 and 3.
In this case, the SPP excitation is associated with the pole
of the Fresnel coefficients r31 and t31, from which the SPP
propagation constant is obtained as [6]

κc = ω̃

(
ε1ε3

ε1 + ε3

)1/2

. (28)

By performing a Taylor expansion of the denominators of (5)
about κc, we can express r31 and t31 for κ close to κc as

rc
31 ≈ ρ31

κ − κc

with ρ31 = − 2wc
1

(
wc

3

)2
ε1

κc

(
wc

3ε3 + wc
1ε1

) , (29a)

t c31 ≈ τ31

κ − κc

with τ31 = −2
√

ε3
√

ε1w
c
1

(
wc

3

)2

κ0
(
wc

3ε3 + wc
1ε1

) . (29b)

The results obtained in Sec. III C are simplified in the single
interface limit for two reasons: (i) for d → ∞ the poles and
zeros of (7) cancel each other exactly [i.e., p(κ) = 1] leading
to the expression �c = κ − κc; (ii) since there are no reflections
from the bottom surface of the slab (r32 = 0), Eq. (15) becomes
uc(z) = p̂c

3+exp(−iwc
3z) and the field in the metal becomes

ec
3(z) = rc

31/tc31 exp(−iwc
3z) p̂c

3−. Using these simplifications in
(27), one finds

γc = 3iω̃2χ (3)

2Kcw
c
3

τ31 p̂c
3+

∫ 0

−∞
|ec

3(z)|2ec
3(z)e−iwc

3zdz, (30)

where we have used also (29b), and

Kc = Re(κc)

ωμ0

{
Re(|ε1|/ε1)

Im(wc
1)

+
∣∣∣∣ρ31

τ31

∣∣∣∣
2 Re(|ε3|/ε3)

Im(wc
3)

}

has been obtained from (12) by setting d → ∞ and noting that
rc

31 diverges. Equation (30) can be integrated straightforwardly,
and the result is given in Appendix C.

IV. RESULTS AND DISCUSSION

A. Complex nonlinear parameter of the SPP

We now apply the theory developed above to calculate
the wavelength-dependent nonlinear parameters of the var-
ious SPP modes supported by the structures in Figs. 1(a)
and 1(b). In particular, we consider as examples a 16-nm-thick
Au slab surrounded by vacuum and a Au-vacuum interface.
For these calculations we take ε1 = ε2 = 1 and assign to
ε3 the measured wavelength-dependent permittivity of Au
reported in Palik’s compendium [33]. Furthermore, we use the
wavelength-dependent values of χ (3) for Au shown in Fig. 2,
which are obtained following the work of Marini et al. [25]
assuming a continuous-wave excitation.

The calculated nonlinear parameters are shown in Fig. 3
over three different wavelength ranges. We follow the notation

400 600 800 1000
−2.50

−1.25

0

1.25

2.50

λ (nm)

χ(3
) /1

0-1
5
(m

2 /V
2 )

500 700 900

Im

Re

FIG. 2. (Color online) Complex χ (3) values of Au as a function
of the wavelength obtained following Marini et al. [25].

given above, with γs , γa , and γc denoting the nonlinear
parameters of the s, a, and c modes, respectively. Moreover,
we use γm to refer to them collectively. In the figures, the
values of γs and γc have been multiplied by a factor of 106 and
400, respectively, before plotting.

The fact that γa is about one million times larger than
γs and 400 times larger than γc is a manifestation of the
different strengths with which these SPPs interact with the
metal. Indeed, for the 16-nm-thick slab structure, the a mode
is tightly confined to the metal slab having a very large portion
of the electric field in the metal, while for the s mode the
electric field is mostly localized in the vacuum region. For
the c mode, on the other hand, the portion of the electric
field localized in the metal is always larger (smaller) than that
of the s mode (a mode). More generally, we found that the
inequalities Reγa > Reγc > Reγs and Imγa > Imγc > Imγs

always hold regardless of the slab’s thickness. The exact values
of γs and γa vary with the metal thickness, both approaching
to the value of γc as the metal thickness increases (data not
shown).

The values of γm in the range 760 < λ < 1000 nm
[Fig. 3(c)] have positive real and imaginary parts, implying
an increment in the absorption and phase accumulation with
increasing mode power. Also, in this wavelength range we
observe an exponential increment of γm as the wavelength
decreases. This feature results mainly from the stronger
interaction of the SPP fields with the metal at the shorter
wavelengths. Note from Fig. 2 that χ (3) is practically constant
over this wavelength range. Thus the rapid increment of
γm is not related to the dispersion of χ (3), but rather due
to the linear dispersion of the SPP. On the other hand,
γm exhibits an interesting behavior for λ < 760 nm partly
because of the strong dispersion of χ (3) in this region of
the spectrum. For example, consider the wavelength range
620 < λ < 760 nm [Fig. 3(b)]. Here we observe that both
the real and the imaginary parts of γm exhibit decreasing and
increasing trends, and over certain regions of the spectrum
and that their values can be negative over certain regions of
the spectrum. In particular, note that γm exhibits a negative
imaginary part over the range 630 < λ < 670 nm, indicating
that for these wavelengths the SPP propagation loss is reduced
as the mode power is increased. Finally, for wavelengths in
the range 550 < λ < 620 nm [Fig. 3(a)], both the real and
imaginary parts of γm increase dramatically as the wavelength
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FIG. 3. (Color online) Complex nonlinear parameter of the various SPP modes m = {s,a,c}, calculated over three different wavelength
ranges. The values of γs and γc have been multiplied by a factor of 106 and 400, respectively, before plotting.

is reduced. In this region of the spectrum, χ (3) exhibits a strong
dispersion caused by the interband electron transition from the
d band to the sp band. Thus the effect observed is caused by
both the large increment in the value of χ (3) and the stronger
field confinement in the metal that occurs over this wavelength
range.

It is important to mention that the accuracy of these results
is limited by the main approximation used in our theory; i.e.,
Eqs. (8) and (29). These approximations are accurate when the
poles of the reflection (or transmission) coefficient are located
close to the real axis in the complex κ plane (see Appendix
A for details). As a result, the theory is not accurate when
the imaginary part of κm is too large, or equivalently, when
the propagation loss of the SPP is too large. Since the SPP
propagation loss increases as the optical wavelength decreases
[30,31], there exists a short-wavelength limit for the validity
of our approximations. By comparing the exact reflection
coefficients and their respective approximated forms, we found
that Eqs. (8) and (29) are accurate to within 5% over the range
λ > 550 nm for the s mode and c mode, and over the range
λ > 640 nm for the a mode.

Also note that there is evidence indicating that the inferred
value of χ (3) for metals like Au depends strongly upon the
laser pulse duration that is used [25,34]. Thus the values of γm

reported in Fig. 3 may not represent faithfully those obtained
in experiments using ultrashort pulses.

B. Nonlinear phase shift and attenuation

Knowing γm, one can estimate the strength of the self-
phase-modulation for given launching power s0 ≡ s(y = y0)
by solving for f (y) in Eq. (24). Without loss of generality,
we assume that the SPP is launched at the position y0 = 0 and
calculate the SPP position-dependent nonlinear phase shift and
the total power attenuation (linear and nonlinear contributions)
as

φNL(y) = tan−1

[
Imf (y)

Ref (y)

]
, A(y) =

∣∣∣∣f (y)

f (0)

∣∣∣∣
2

,

respectively. The maximum nonlinear phase shift acquired by
the SPP is thus given by φ̄NL = φNL(�SP), where �SP is the
SPP propagation length, defined as the distance y at which
A(y) = exp(−1).

As an example, we consider the structures studied above
operating at the wavelength λ = 640 nm. Note from Fig. 3(b)
that Imγm < 0 at this wavelength, indicating SPP propagation
loss reduction with increasing power. In our calculations we
set the value of s0 such that the ratio of nonlinear polarization
to linear polarization is ∼0.1, which ensures compliance with
the perturbative approximation for the nonlinear polarization
made in our analysis [i.e., Eq. (B3)]. Table I tabulates φ̄NL and
�SP obtained for the various SPP modes by solving Eq. (24)
using the adaptive Runge-Kutta method. The values of γm and
s0 used for each calculation are also given in the table.

The values of φ̄NL are comparable for the three modes
because the product Reγms0�SP turns out to be very similar for
the three cases. Furthermore, despite the large values of γm,
the parameter φ̄NL is always small because �SP is very short.
We note that the short propagation lengths are mainly dictated
by the linear losses. Indeed, the loss reduction resulting from
the nonlinearity was calculated as ∼10% for all the modes.
In practice, one could use a larger launching power, s0, to
obtain a larger φ̄NL as long as structural damage does not
occur. However, to accurately model self-phase-modulation
using values of s0 larger than those used here, it would be
necessary to employ a nonperturbative nonlinear polarization
model.

While the values of φ̄NL obtained here are small, the
corresponding nonlinear phase shifts per unit length (i.e.,
φ̄NL/�SP) are very large. For instance, for the a and c modes,
this figure is equivalent to acquiring a nonlinear phase shift of
π radians in a lossless system over a distance of only ∼4 μm
and ∼73 μm, respectively. Clearly, extending the propagation
length of these SPPs could increase significantly the acquired

TABLE I. Self-phase-modulation parameters of the various SPP
modes at λ = 640 nm.

m s a c

Reγm (W−1) 8.29 × 10−7 1.42 2.27 × 10−3

Imγm (W−1) −0.88 × 10−7 −0.33 −0.21 × 10−3

s0 (kW/mm) 1130 0.83 30
φ̄NL (rad) π/9.2 π/9.1 π/9.0
�SP (μm) 568.6 0.455 7.47
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nonlinear phase shift. Recently, optical amplification of SPP
has been demonstrated in similar plasmonic structures [35];
thus increasing the SPP propagation length by this means could
be a possible strategy to take advantage of the large nonlinear
effect.

C. Comparison with an experimental result

The nonlinear response of the SPP supported by a Au film
in the Kretschmann configuration was recently investigated
by some of us [36] using a pulsed laser excitation with a
pulse duration of ∼100 fs and a wavelength of 796 nm. The
Kretschmann structure consisted of a 48-nm-thick Au film
with one of its surfaces in direct contact with a glass substrate
and the other bounded by air. In this experiment, the complex
nonlinear parameter of the Kretschmann SPP was obtained as
γK = (8.08 + i1.46) × 10−7 1/W from measurements of the
intensity-dependent attenuated total internal reflection. The
experiment also allowed for the extraction of the nonlinear
susceptibility of Au, which resulted in a value of χ (3) =
(4.67 + i3.03) × 10−19 V2/m2. We note that this value of χ (3)

is about 100 times smaller than the theoretical estimation in
Fig. 2 (for continuous-wave light), which is consistent with
other experimental observations [34].

The Kretschmann SPP studied in Ref. [36] is similar to
the c mode of the single Au-air interface structure. They both
exhibit a very similar electromagnetic field profile in the metal
and air regions. However, they differ in that the Kretschmann
SPP extends part of its field into the glass substrate, making
the mode leaky [6]. As a result, the propagation constant of the
Kretschmann SPP is slightly different from that of the c mode.
Nonetheless, the similarities between these two modes allows
us to draw a fair comparison of their nonlinear responses.

Using the measured value of χ (3) in (30), we obtain
γc = (1.03 + i0.98) × 10−7 1/W. This result agrees with the
measured value of γK to within an order of magnitude. The
discrepancy can be attributed in part to the approximations
made in our theory and to the differences between the
Kretschmann and c modes. Yet other reasons with deeper
physical significance may exist. For instance, a contribution
to the nonlinear response arising from the metal surface
and finite thickness of the metal could exist in addition to
the usual bulk contribution. Evidence of these contributions,
which are not accounted for in the present theory, have been
recently reported by other groups [37,38] in the context of SPP
four-wave mixing and third-harmonic generation. However,
these phenomena remain largely unexplored in the context
of SPP self-phase-modulation. Thus more work is needed to
understand the various mechanisms that can contribute to the
nonlinear response of simple plasmonic structures such as the
ones studied here, aiming to achieve a better understanding
of the fundamental nonlinear interactions in more complex
plasmonic structures.

V. SUMMARY AND CONCLUSIONS

In summary, we have presented an approach to model
the intrinsic nonlinear response (i.e., that arising from the
nonlinearity of the metal) of SPPs supported by two standard
plasmonic waveguides: the metal slab and semi-infinite metal

bounded by linear dielectrics. Our formulation employs a
Green-function formalism to model the SPP fields resulting
from an arbitrary nonlinear polarization in the metal. This
approach was then used to study the case where SPPs interact
with themselves through the third-order nonlinear response of
the metal, leading to SPP self-phase-modulation. We provided
equations that relate directly the SPP nonlinear propagation
coefficient with the metal’s χ (3) coefficient. This relation has
practical importance, as it allows one to estimate the complex
value of χ (3) of plasmonic materials through a measurement
of SPP nonlinear propagation coefficient. Also, we presented
and discussed numerical results for self-phase-modulation of
the symmetric and antisymmetric SPP modes supported by a
thin Au slab in vacuum, and of the SPP mode supported at
a single Au-vacuum interface. We discussed aspects such as
the substantial difference between the nonlinear parameter of
these three modes and their strongly dispersive characteristics.
Finally, we provided a comparison between the SPP nonlinear
parameter estimated by our theory and that measured in a
recent experiment.
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APPENDIX A: EXPRESSING THE RESPONSE
COEFFICIENTS USING A POLE EXPANSION OF p(κ)

Here we detail the steps taken to represent the response
coefficients in (6) using a pole expansion of p(κ). We start
by using the expression for rij as given by (5) into (7) and
write

p(κ) = a1a2

a1a2 − b1b2e2iw3d
, (A1)

where ai = (wiε3 + w3εi) and bi = (wiε3 − w3εi). Here, the
expression a1a2 − b1b2e

2iw3d = 0 is the dispersion relation for
the SPP modes supported by the slab and the solutions of this
equation identify the poles of p(κ). Similarly, the expressions
a1 = 0 and a2 = 0 denote the dispersion relations of single-
interface SPPs localized at the interface between media 1-3
and 2-3, respectively; the solutions to these equations identify
the zeros of p(κ). One can express (A1) as a rational function
of poles and zeros [39],

p(κ) = A(κ)
Z(κ)

P (κ)
, (A2)

where A(κ) is a slowly varying function of κ , and

P (κ) =
∏
m

(κ − κm), Z(κ) =
∏

l

(κ − κl),

are the pole and zero functions, with κm and κl being the
complex propagation constants associated with the poles and
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zeros of (A1), respectively. Expressing P (κ) as a partial
fraction expansion, we write (A2) as

p(κ) =
∑
m

�m(κ)

κ − κm

, (A3)

where �m(κ) = A(κ)Z(κ)Res[P (κ),κm] with the quantity
Res[P (κ),κm] denoting the residue of P (κ) at κm.

To derive (8), we assume that the poles are far from each
other in the complex plane and sufficiently close to the real
axis such that we can approximate (A3) for values of κ close
to κm as the contribution of the one pole at κm,

p(κ) ≈ �m

κ − κm

, (A4)

where we have defined �m ≡ �m(κ ′
m), since �m(κ) varies

slowly compared to (κ − κm)−1 in the vicinity of κm. Finally,
substituting (A4) in (6) yields (8).

APPENDIX B: APPLICABILITY OF EQ. (20)

Equation (20) is valid when the second term on the right-
hand side of (18) is negligible. Here, we determine the situation
under which such a condition is valid. We start by rewriting
(18) as (κ − κm)G̃(κ; z) = η(κ)e(z), where

G̃(κ; z) = Ẽ(κ; z) + 1

ε0ε3
P̃(κ; z) · ẑ ẑ, (B1)

and using the relation P̃(κ; z) = 3ε0χ
(3)|Ẽ(κ; z)|2 Ẽ(κ; z) in

the equation above, we write

G̃(κ; z) · ẑ =
(

1 + 3χ (3)

ε3
|Ẽ(κ; z)|2

)
Ẽ(κ; z) · ẑ. (B2)

Since G̃(κ; z) and Ẽ(κ; z) only differ in their z compo-
nents, it is clear from this result that one can approximate
G̃(κ; z) ≈ Ẽ(κ; z) when

|χ (1)|  3|χ (3)||Ẽ(κ; z)|2, (B3)

where we have used |ε3| = |χ (1) + 1| ≈ |χ (1)|. Another impor-
tant inequality that must be satisfied in the nonlinear regime is

|χ (1)|  |χ (3)||Ẽ(κ; z)|2, (B4)

which is required for the usual expansion of the total
polarization [29] to make physical sense. Note that the
right-hand side of (B3) is only three times larger that the
right-hand side of (B4). Thus both inequalities are satisfied
with fields |Ẽ(κ; z)|2 of the same order of magnitude. In our
calculations we restrict ourselves to consider fields that satisfy
(B3), and hence also satisfy (B4).

APPENDIX C: EXPLICIT EXPRESSION FOR THE SPP
NONLINEAR PROPAGATION COEFFICIENT

An expression for the nonlinear parameter of the SPP modes
of the slab was given in (27) in terms of the transverse SPP
field distribution, e(z), and the function um(z). Here, we further
develop these results and provide a more explicit form for
this expression. We start by noting that for the SPP modes
of the slab, m = {s,a}, we can use the dispersion relation
rm

31r
m
32 exp(2iwm

3 d) = 1 and write

e3(z) = 1

tm31

(
p̂m

3+
1

gm

+ p̂m
3−rm

31gm

)
,

um(z) = p̂m
3+gm + p̂m

3−
1

rm
31gm

,

where we have defined gm ≡ exp(−iwm
3 z). Then using these

expressions in (27) one finds

γm = 3iω̃2χ (3)�m

2Kmwm
3

∣∣∣∣ rm
31

tm31

∣∣∣∣
2

rm
31Im (C1)

for m = {s,a}, where

Im =
∫ 0

−d

dz

[
Q1 |gm|2 + Q1∣∣rm

31gm

∣∣2 + 2Q2

rm
31

cos
(
2wm

3 z
)]

×
[
Q3(gm)2 + Q3(

rm
31gm

)2 + 2Q4

rm
31

]
(C2)

and the following shorthand notation has been used:

Q1 = p̂m
3+ · p̂m∗

3+ = p̂m
3− · p̂m∗

3−,

Q2 = p̂m
3+ · p̂m∗

3− = p̂m
3− · p̂m∗

3+,

Q3 = p̂m
3+ · p̂m

3− = p̂m
3− · p̂m

3+,

Q4 = p̂m
3+ · p̂m

3+ = p̂m
3− · p̂m

3−.

As discussed in Sec. III D, for d → ∞ we have rc
31 → ∞ and

�c = κ − κc. Thus, for the c mode supported by the single-
interface structure, (C1) becomes

γc = 3iω̃2χ (3)

2Kcw
c
3

∣∣∣∣ρ31

τ31

∣∣∣∣
2

ρ31Ic, (C3)

where ρ31 and τ31 are defined in (29) and

Ic =
∫ 0

−∞
dz Q1Q3 |gc|2 (gc)2 = Q1Q3

2
(
Imwc

3 − iwc
3

) . (C4)
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